PAK4 mediates morphological changes through the regulation of GEF-H1.

نویسندگان

  • Marinella G Callow
  • Sergey Zozulya
  • Mikhail L Gishizky
  • Bahija Jallal
  • Tod Smeal
چکیده

Precise spatial and temporal regulation of Rho GTPases is required in controlling F-actin-based changes in cell morphology. The molecular mechanisms through which microtubules (MTs) modulate the activity of RhoGTPases and regulate the actin cytoskeleton are unclear. Here we show that p21-activated-kinase 4 (PAK4) mediates morphological changes through its association with the Rho-family guanine nucleotide exchange factor (GEF), GEF-H1. We show that this association is dependent upon a novel GEF-H1 interaction domain (GID) within PAK4. Further, we show that PAK4-mediated phosphorylation of Ser810 acts as a switch to block GEF-H1-dependent stress fiber formation while promoting the formation of lamellipodia in NIH-3T3 cells. We found that the endogenous PAK4-GEF-H1 complex associates with MTs and that PAK4 phosphorylation of MT-bound GEF-H1 releases it into the cytoplasm of NIH-3T3 cells, which coincides with the dissolution of stress fibers. Our observations propose a novel role for PAK4 in GEF-H1-dependent crosstalk between MTs and the actin cytoskeleton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription

Epithelial tight junctions recruit different types of signalling proteins that regulate cell proliferation and differentiation. Little is known about how such proteins interact functionally and biochemically with each other. Here, we focus on the Y-box transcription factor ZONAB (zonula occludens 1-associated nucleic-acid-binding protein)/DbpA (DNA-binding protein A) and the Rho GTPase activato...

متن کامل

PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion.

Hepatocyte growth factor (HGF) is associated with tumour progression and increases the invasiveness of prostate carcinoma cells. Migration and invasion require coordinated reorganisation of the actin cytoskeleton and regulation of cell-adhesion dynamics. Rho-family GTPases orchestrate both of these cellular processes. p21-activated kinase 4 (PAK4), a specific effector of the Rho GTPase Cdc42, i...

متن کامل

Microtubules regulate GEF-H1 in response to extracellular matrix stiffness

Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubu...

متن کامل

p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor.

GEF-H1 is a guanine nucleotide exchange factor for Rho whose activity is regulated through a cycle of microtubule binding and release. Here we identify a region in the carboxyl terminus of GEF-H1 that is important for suppression of its guanine nucleotide exchange activity by microtubules. This portion of the protein includes a coiled-coil motif, a proline-rich motif that may interact with Src ...

متن کامل

Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.

Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2005